

ASSISTANCE POUR VOUS

EN LIGNE

Produit

Documentation technique

Logiciel pour le dimensionnement

Possibilités d'usinage, prix d'articles

Processus de traitement, Mise en oeuvre

Composition et details de construction

Certificat

3D bibliotheque

NOVATOP ELEMENT CONTENT

DOCUMENTATION TECHNIQUE

1	Spécification technique	
Caract	teristiques techniques	4
Caisso	on structurel	5
Forma	ats standards	6
2	Propriétés mecaniqués	
Valeur	rs de section	8–10
Dimer	nsionnement préliminaire	11–18
Logici	iel de dimensionnement	18
Exemp	ples de dimensionnement – calcul	19–23
Contro	ôle des vibrations	24–26
Isolati	ion thermique	27
Résista	tance au feu	28
3	Propriétés acoustiques	
Bruit a	aérien et bruit de choc	30–31
4	Informations générales	
Usinag	ge, etiquetage et emballage	32
Stocka	age, transport	
Manip	pulation, montage	
5	Spécification des qualités	
Spécif	fication des qualités	36–39

Avertissements:

Tous droits de modification technique et d'erreur d'impression réservés. En raison de l'impression, il est possible que les couleurs diffèrent de l'original.

Avertissements:

Veuillez consulter la page Téléchargements sur le site web pour trouver la version actuelle de la documentation technique.

NOVATOP ELEMENT CARACTERISTIQUES TECHNIQUES

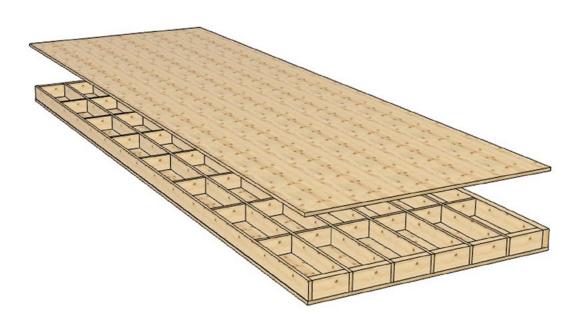
CONTENT

Description

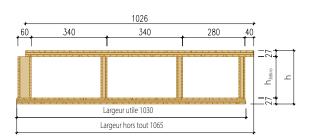
NOVATOP ELEMENT – sont des composants techniques de grandes surfaces à membrures internes fabriqués avec plusieurs couches de planches d'épicéa. L'élément est composé d'une couche inférieure de base, dont l'épaisseur dépend de la résistance au feu exigée. Les raidisseurs transversaux et longitudinaux sont collés sur la couche inférieure, leurs hauteurs dépendent de la capacité portante de l'élément. L'ensemble est fermé par un panneau multi-couches, collé sur les membrures internes.

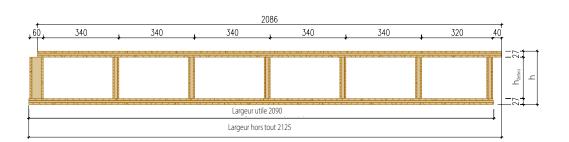
Utilisation	Pour planchers et toits
Certifications	ETA-11/0310
Essences de bois	Épicea de pays
Qualité de la surface	Non-visible (qualité C), visible (qualité B). Classification des qualités d'après les instructions internes AGROP NOVA s.a.
Format grand panneau	Max 12.000 x 2.450 mm
Formats standards (mm)	Hauteur: 160, 180, 200, 220, 240, 280, 300, 320, max. 400 Largeur: 1030, 2090, 2450, max 2.450 Longueur: selon besoin, standard 6.000, max 12.000 (extension par un joint à dentures avec un renforcement interne)
Tolérances dimensionnelles selon EN 13 353	Tolérances nominales de largeur et de longueur : ± 2 mm Planéité : ± 1 mm/m Equerrage : ±1 mm/m
Surface	Ponçage - K 50, 100
Colle	Colle mélamine selon EN 301, PU selon EN 15425
Classement en formaldéhyde	E1 selon EN 717-1 (max. 0,124 mg/m³)
Taux d'humidité	10 ± 3%
Unité de mesure de capacité thermique c _p	1.600 J/kg.K selon EN ISO 10456
Coefficient de retrait et gonflement	α (%/%) 0,002 - 0,012 %
Densité	cca 490 kg/m³
Réaction au feu (SWP)	D-s2,d0 selon EN 13501-1
Conductibilité thermique (λ) (SWP)	0,13 W/mK, avec une densité de 490 kg/m³ selon EN ISO 10456
Résistance de la diffusion (μ) (SWP)	200/70 (sec/humide) selon EN ISO 10456

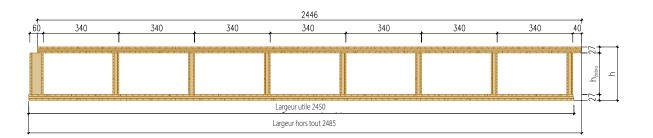
Н


2

7




NOVATOP ELEMENT CAISSON STRUCTUREL


CONTENT

LARGEUR STANDARD

1

2

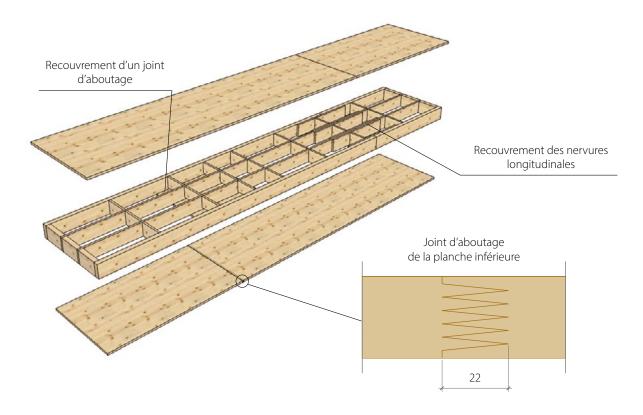
Л

NOVATOP ELEMENT FORMATS STANDARDS

CONTENT

5000

Hauteur: 160, 180, 200, 220, 240, 280, 300, 320, max. 400


Largeur: 1030, 2090, 2450, max 2.450 mm

Longueur: selon le projet, standard 6.000 max 12.000 mm (extension par un joint à dentures avec un renforcement interne)

Format maximal: 12.000 x 2.450 mm

Les éléments sont certifiés par ETA jusqu'à 12 m.

EXEMPLE D'EXTENSION D'UN ÉLÉMENT DE PLUS DE 6 m

3

4

NOVATOP ■ ■ ■ •

NOTES

CONTENT

2

4

5

www.novatop-system.fr

NOVATOP ELEMENT PROPRIÉTÉS MÉCANIQUES

CONTENT

Valeurs de section				SS	- 27	2 2 J									
Hauteur de l'élément	h Bement	mm	160	180	200	220	240	260	280	300	320	340	360	380	400
Composition de la SWP supérieure-inférieure		mm						27 (9,	27 (9/9/9) - 27 (9/9/9)	(6/6					
Poids propre	ŋ	kWm²	0,31	0,32	0,33	0,34	0,34	9'35	98'0	0,37	0,38	0,38	68'0	0,40	0,41
Portée	в	mm	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000
Hauteur des nervures	h	mm	106	126	146	166	186	206	226	246	266	286	306	326	346
Largeur de référence	q	mm	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Espacement des nervures	Ð	mm	340	340	340	340	340	340	340	340	340	340	340	340	340
Largeur effective de la plan- che supérieure	$\mathbf{b}_{ ext{eff}}$ planche supérieure	mm	963	963	963	963	963	963	963	963	963	963	963	963	963
Largeur effective de la plan- che inférieure	$b_{eff,plancheinfeieure}$	mm	963	963	963	963	963	963	963	963	963	963	963	963	963
Surface de la section effective	¥	mm²	38423	39129	39835	40541	41247	41952	42658	43364	44070	44776	45482	46188	46894
Centre de gravité de la	$Z_{s,\delta} \text{partir du bord supérieur}$	mm	80	06	100	110	120	130	140	150	160	170	180	190	200
section :	$Z_{s,\delta} \text{partir} \text{du bord inferieur}$	mm	80	90	100	110	120	130	140	150	160	170	180	190	200
	S2 (joint dans la planche supérieure)	mm³	6,55E+05	7,41E+05	8,28E+05	9,15E+05	1,00E+06	1,09E+06	1,17E+06	1,26E+06	1,35E+06	1,43E+06	1,52E+06	1,61E+06	1,70E+06
	S3 (joint collé nervure – planche supérieure)	mm³	1,15E+06	1,33E+06	1,50E+06	1,67E+06	1,85E+06	2,02E+06	2,19E+06	2,37E+06	2,54E+06	2,71E+06	2,89E+06	3,06E+06	3,23E+06
Moments statiques	S4 (joint collé nervure – planche inférieure)	mm³	1,15E+06	1,33E+06	1,50E+06	1,67E+06	1,85E+06	2,02E+06	2,19E+06	2,37E+06	2,54E+06	2,71E+06	2,89E+06	3,06E+06	3,23E+06
	S5 (joint dans la planche inférieure)	mm³	6,55E+05	7,41E+05	8,28E+05	9,15E+05	1,00E+06	1,09E+06	1,17E+06	1,26E+06	1,35E+06	1,43E+06	1,52E+06	1,61E+06	1,70E+06
	S (centre)	mm³	1,20E+06	1,40E+06	1,59E+06	1,79E+06	2,00E+06	2,21E+06	2,42E+06	2,63E+06	2,85E+06	3,07E+06	3,30E+06	3,53E+06	3,76E+06
Moment d'inertie de la section selon la théorie de l'élasticité	-	mm4	1,60E+08	2,12E+08	2,72E+08	3,39E+08	4,15E+08	4,99E+08	5,92E+08	6,93E+08	8,03E+08	9,21E+08	1,05E+09	1,19E+09	1,33E+09
Module d'Inertie selon la théorie de l'élasticité	W, supérieure	mm³	2,00E+06	2,35E+06	2,72E+06	3,09E+06	3,46E+06	3,84E+06	4,23E+06	4,62E+06	5,02E+06	5,42E+06	5,83E+06	6,24E+06	6,66E+06
	Winferieure	mm³	2,00E+06	2,35E+06	2,72E+06	3,09E+06	3,46E+06	3,84E+06	4,23E+06	4,62E+06	5,02E+06	5,42E+06	5,83E+06	6,24E+06	6,66E+06
Rigidité de flexion effective	Eleff	Nmm²	1,75E+12	2,32E+12	2,96E+12	3,69E+12	4,50E+12	5,39E+12	6,37E+12	7,44E+12	8,59E+12	9,83E+12	1,12E+13	1,26E+13	1,41E+13

2

3

4

NOVATOP ELEMENT PROPRIÉTÉS MÉCANIQUES

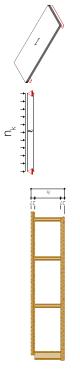
CONTENT

Valeurs de section					27 66	2 S S S A									
Hauteur de l'élément	h _{Bement}	mm	160	180	200	220	240	260	280	300	320	340	360	380	400
Composition de la SWP supérieure-inférieure		mm						27 (9/	27 (9/9/9) - 33 (9/15/9)	(2/9)					
Poids propre	9	kN/m²	0,34	0,35	98'0	98'0	0,37	0,38	0,39	0,40	0,40	0,41	0,42	0,43	0,44
Portée	д	mm	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000
Hauteur des nervures	hervue	mm	100	120	140	160	180	200	220	240	260	280	300	320	340
Largeur de référence	q	mm	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Espacement des nervures	Ð	mm	340	340	340	340	340	340	340	340	340	340	340	340	340
Largeur effective de la plan- che supérieure	b eff planche supérieure	шш	963	963	963	963	963	963	963	963	963	963	963	963	963
Largeur effective de la plan- che inférieure	$\mathbf{b}_{ ext{eff, planche in Révieure}}$	mm	962	962	362	962	396	396	962	962	362	962	962	962	362
Surface de la section effective	٧	mm²	38184	38890	39595	40301	41007	41713	42419	43125	43831	44537	45243	45948	46654
on to on the section .	$Z_{s,\hat{a}} \text{partir} \text{du bord supérieur}$	mm	78	88	86	108	118	128	138	148	158	168	178	188	198
	$Z_{s,\hat{a}} \text{ partir du bord inférieur}$	mm	82	92	102	112	122	132	142	152	162	172	182	192	202
	S2 (joint dans la planche supérieure)	mm³	6,40E+05	7,26E+05	8,13E+05	8,99E+05	9,86E+05	1,07E+06	1,16E+06	1,25E+06	1,33E+06	1,42E+06	1,50E+06	1,59E+06	1,68E+06
	S3 (joint collé nervure – planche supérieure)	mm³	1,12E+06	1,30E+06	1,47E+06	1,64E+06	1,82E+06	1,99E+06	2,16E+06	2,33E+06	2,51E+06	2,68E+06	2,85E+06	3,03E+06	3,20E+06
Moments statiques	S4 (joint collé nenvure – planche inférieure)	mm³	1,13E+06	1,30E+06	1,48E+06	1,65E+06	1,82E+06	2,00E+06	2,17E+06	2,34E+06	2,52E+06	2,69E+06	2,86E+06	3,04E+06	3,21E+06
	S5 (joint dans la planche inférieure)	mm³	6,68E+05	7,55E+05	8,42E+05	9,29E+05	1,02E+06	1,10E+06	1,19E+06	1,28E+06	1,36E+06	1,45E+06	1,54E+06	1,62E+06	1,71E+06
	S (centre)	mm³	1,17E+06	1,36E+06	1,56E+06	1,76E+06	1,96E+06	2,17E+06	2,38E+06	2,59E+06	2,81E+06	3,03E+06	3,26E+06	3,48E+06	3,72E+06
Moment d'inertie de la section selon la théorie de l'élasticité	-	mm ⁴	1,53E+08	2,04E+08	2,63E+08	3,29E+08	4,03E+08	4,86E+08	5,77E+08	6,76E+08	7,84E+08	9,01E+08	1,03E+09	1,16E+09	1,31E+09
Module d'Inertie selon la	Wsupérieure	mm³	1,96E+06	2,31E+06	2,67E+06	3,04E+06	3,41E+06	3,79E+06	4,18E+06	4,57E+06	4,96E+06	5,36E+06	5,77E+06	6,18E+06	6,59E+06
théorie de l'élasticité	Winferieure	mm³	1,88E+06	2,23E+06	2,58E+06	2,94E+06	3,31E+06	3,69E+06	4,07E+06	4,45E+06	4,85E+06	5,24E+06	5,64E+06	6,05E+06	6,46E+06
Rigidité de flexion effective	El _{eff}	Nmm²	1,69E+12	2,24E+12	2,87E+12	3,58E+12	4,38E+12	5,26E+12	6,22E+12	7,27E+12	8,41E+12	9,63E+12	1,09E+13	1,23E+13	1,38E+13

7

NOVATOP ELEMENT PROPRIÉTÉS MÉCANIQUES

4,51E+06 3,59E+06 4,69E+06 9,91E+06 6,71E+06 2,03E+06 1,69E+13 63036 4000 1000 0,56 313 162 400 340 963 962 238 154 380 293 1,32E+13 61624 000 0,54 273 360 2,98E+06 3,70E+06 3,27E+06 1,16E+13 1,09E+09 1000 340 0,54 253 340 963 962 202 3,43E+06 7,24E+06 1,01E+13 3,05E+06 2,78E+06 9,45E+08 4,99E+06 000 0,53 320 233 340 963 189 131 8,10E+08 2,84E+06 3,17E+06 2,58E+06 8,64E+12 3,24E+06 ,50E+06 4000 000 59506 60(9/9/9 + 9/15/9)0,52 213 963 962 177 123 7,34E+12 2,90E+06 4,16E+06 58800 000 4000 340 0,51 963 165 2,64E+06 6,15E+12 2,41E+06 2,19E+06 2,68E+06 3,76E+06 1,28E+06 4000 1000 173 80 260 05'0 340 962 152 963 2,38E+06 5,07E+12 2,41E+06 000 240 0,50 153 340 962 140 9 963 4,10E+12 2,99E+06 3,80E+08 56683 1000 4000 220 133 340 962 127 963 93 72 88 1,87E+06 3,23E+12 1,75E+06 2,99E+08 55977 000 200 340 962 114 963 98 1,42E+06 1,62E+06 2,25E+06 2,48E+12 1,53E+06 1,63E+06 2,93E+06 55271 4000 000 8 0,47 962 102 93 963 78 1,83E+12 1,31E+06 ,24E+06 1000 99 340 73 963 962 89 7 Nmm² kN/m² mm mm шш mm шш mm ШШ ШU mm mm³ S5 (joint dans la planche inférieure) S2 (joint dans la planche supérieure) S4 (joint collénervure - planche S (centre) S3 (joint collé nervure -Winférieure U Ē Moment d'inertie de la section selon la théorie de l'élasticité Surface de la section effective Largeur effective de la plan Largeur effective de la plan Rigidité de flexion effective Module d'Inertie selon la théorie de l'élasticité Espacement des nervures Composition de la SWP Hauteur des nervures supérieure-inférieure Largeur de référence Hauteur de l'élément Centre de la section Moments statiques Poids propre


1

3

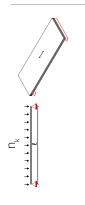
5

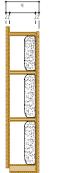
/aleurs de section

Ч	
	^{2₹}

	11	400			-	-	-			,	-			-	- 1	-	-		-	-	-			-	-	
	10,5	380	400		-	-	400				-	-	-	-			-		-	-	-	-	-	-	-	,
	10	360	380		-	-	380	400		-	-	400	-	-	-	-	-	-	-	-	-		-	-	-	
	5,6	340	360	400	-	-	360	380			-	380	400	-	-	-	400	_	-	-	-		-	-	-	
	6	320	340	380	-	-	340	360	400	1	-	360	380	1	1	-	380	400	-	-	-	400	1	-	-	
	8,5	300	320	360	380	1	320	340	380	400	-	340	360	400	1	-	360	360	-	-	-	380	380	-	-	,
	8	280	300	320	360	380	300	300	340	380	400	300	320	360	380	-	320	340	380	400	-	340	360	400	-	,
	7,5	790	260	300	340	360	260	280	320	340	360	280	300	340	360	380	300	320	360	380	400	320	340	360	380	400
(6	7	240	240	280	300	320	240	260	300	320	340	260	280	300	320	340	280	300	320	340	360	300	300	340	360	380
9) - 27 (9/9/9	6,5	220	220	260	280	300	220	240	260	280	300	240	260	280	300	320	260	260	300	320	320	280	280	300	320	340
tion 27 (9/9/	9	200	200	220	260	280	200	220	240	260	280	220	220	260	280	280	240	240	260	280	300	240	260	280	300	300
Portée / composition 27 (9/9/9) - 27 (9/9/9)	5,5	180	180	200	220	240	180	200	220	240	260	200	200	240	240	260	200	220	240	260	260	220	220	260	260	280
Porté	5	160	160	180	200	220	160	180	200	220	220	180	180	200	220	240	180	200	220	220	240	200	200	220	240	240
	4,5	160	160	160	180	200	160	160	180	180	200	160	160	180	200	200	160	180	200	200	220	180	180	200	200	220
	4	160	160	160	160	160	160	160	160	160	180	160	160	160	160	180	160	160	160	180	180	160	160	180	180	200
	3,5	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	180
	3	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160
Charges	variables (n_k)	1,5	2	8	4	5	1,5	2	е	4	5	1,5	2	3	4	5	1,5	2	3	4	5	1,5	2	3	4	5
	nentes (g _k)			-					1,5	<u> </u>				2					2,5					3		

Dimensionnement préliminaire pour caisson vide $w_{inst} \le \ell/300$

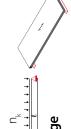

5

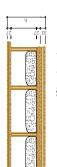

3

	CONTEN	Т				ノ i 	ı v		ı N			<i>_</i>	N I	N L	_ ' \	/ I L	_'	N 1			`_		111	' 1	1 N	<i>,</i> ,	11	`_
,	1 00		9	200	200	240	260	280	200	220	240	260	280	220	240	260	280	300	240	240	280	280	300	240	260	280	300	320
	Dimensionnement préliminaire pour caisson vide $w_{inst} \le \ell/300$	(6/	5,5	180	180	220	220	240	180	200	220	240	260	200	220	240	240	260	220	220	240	260	280	220	220	260	260	280
- - - 	vide w _{in}	9) - 33 (9/15/	5	160	160	180	200	220	160	180	200	220	220	180	180	200	220	240	180	200	220	240	240	200	200	220	240	260
 	caisson vi	Portée / composition 27 (9/9/9) - 33 (9/15/9)	4,5	160	160	160	180	200	160	160	180	180	200	160	160	180	200	200	160	180	200	200	220	180	180	200	220	220
4Z	e pour c	ée / compos	4	160	160	160	160	180	160	160	160	160	180	160	160	160	180	180	160	160	180	180	180	160	160	180	180	200
	liminair	Port	3,5	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	180
	 ent pré		ю	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160
	ionnem	Charges	variables (n _k)	1,5	2	3	4	5	1,5	2	3	4	5	1,5	2	3	4	5	1,5	2	3	4	5	1,5	2	3	4	5
become	Dimens	Charges	perma- nentes (g _k)			-					1,5					2					2,5					ю	·	
,	1 00		9	200	200	220	240	260	200	220	240	260	280	220	220	260	260	280	220	240	260	280	300	240	240	280	280	300
-	de w _{inst} ≤ <i>8</i> /300	(6/51/6	5,5	180	180	200	220	240	180	200	220	240	240	200	200	220	240	260	200	220	240	260	280	220	220	240	260	280
⊆ [*] -	vide w _{in}	60 (6/6/6) + 6/12/9)	5	160	180	180	200	220	180	180	200	200	220	180	180	200	220	240	180	200	220	220	260	200	200	220	240	260
→ → →	Dimensionnement préliminaire pour caisson vi	Portée / composition 27 (9/9/9) - 60	4,5	160	160	160	180	200	160	160	180	180	200	160	160	180	200	220	180	180	200	200	240	180	180	200	220	240
22	Le pour	/ compositio	4	160	160	160	160	180	160	160	160	160	180	160	160	160	180	200	160	160	180	180	200	160	160	180	200	220
	liminair	Portée,	3,5	160	160	160	160	160	160	160	160	160	160	160	160	160	160	180	160	160	160	160	180	160	160	160	180	200
	lent pré		æ	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	180
	ionnem	Charges	variables (n _k)	1,5	2	3	4	5	1,5	2	3	4	5	1,5	2	3	4	5	5′1	2	3	4	5	5′1	2	3	4	5
-	Dimens	Charges	perma- nentes (g _k)			_					1,5					2					2,5					ю		

Dimensionnement préliminaire avec remplissage calcaire 40 kg/m 2 , $w_{inst} \le \ell/300$

	10,5	400	1	,		1	-		-	-	-	-	1				1		1	1	-	-	-	1		1
	10	380	400	1		1	400	-	-	-	-	1	1	1	1	1	-	1	1	1	-	-	-	1	1	
	9,5	360	380	-	-	-	380	400	-	-	-	400	-	-	-	-	-	-	-	-	-	-	-	-	-	
	6	340	360	400	1	i	360	380	1	ı	-	380	400	ı	1	1	400	ı	1	ı	-	-	1	ı	1	,
	8,5	300	320	360	400	-	320	340	380	-	-	340	360	400	-	-	380	380	-	-	-	400	400	-	-	
	8	280	300	340	360	400	300	320	360	380	-	320	340	380	400	1	340	360	400	1	-	360	380	ı	1	,
	7,5	260	280	320	340	360	280	300	340	360	380	300	320	340	360	400	320	320	360	380	400	340	340	380	400	
(6	7	240	260	280	320	340	260	280	300	320	340	280	280	320	340	360	300	300	340	360	380	300	320	360	360	380
/9) - 27 (9/9/9	6,5	220	240	260	280	300	240	260	280	300	320	260	260	300	300	320	260	280	300	320	340	280	280	320	340	360
sition 27 (9/9	9	200	220	240	260	280	220	220	260	260	280	220	240	260	280	300	240	240	280	300	300	260	260	300	300	320
Portée / composition 27 (9/9/9) - 27 (9/9/9)	5,5	180	200	220	240	260	200	200	220	240	260	200	220	240	260	260	220	220	260	260	280	240	240	260	280	280
Pol	5	160	180	200	200	220	180	180	200	220	240	180	200	220	220	240	200	200	220	240	240	200	200	240	240	260
	4,5	160	160	180	180	200	160	160	180	200	200	160	180	180	200	220	180	180	200	200	220	180	180	200	220	220
	4	160	160	160	160	180	160	160	160	160	180	160	160	160	180	180	160	160	180	180	200	160	160	180	180	200
	3,5	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	180	160	160	160	160	180
	3	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160
Charges	variables (n _k)	1,5	2	3	4	5	1,5	2	3	4	5	1,5	2	3	4	5	1,5	2	3	4	5	1,5	2	3	4	2
Charges	perina- nentes (9),			-					1,5					2					2,5					m		

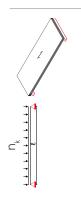

1

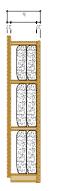

sliminaire a < 2/300
prélim
nement ka/m² v
 Dimensionnement préliminaire a calcaire 40 kg/m² w∴≤ 2/300
<u> </u>

(0)		Charges			DO	Dartée / (9/15/0)	0/0/ 75 aciti	77 (0/15	(0)	
(2)		nerma-	Charges		D.	sodilion / aai	(6/6) /7 HODII	(C1 /6) /7 - /6.	(2)	
5,5	9	nentes (g _k)	variables $(n_{\underline{k}})$	3	3,5	4	4,5	5	5,5	9
180	200		1,5	160	160	160	160	160	180	200
200	220		2	160	160	160	160	180	200	220
220	240	-	е	160	160	160	180	200	220	240
240	260		4	160	160	160	180	220	240	260
240	280		5	160	160	180	200	220	260	280
200	220		1,5	160	160	160	160	180	200	220
200	220		2	160	160	160	160	180	200	220
220	240	1,5	е	160	160	160	180	200	240	260
240	260		4	160	160	180	200	220	240	280
260	280		5	160	160	180	200	240	260	300
200	220		1,5	160	160	160	160	180	200	240
220	240		2	160	160	160	180	200	220	240
240	260	2	е	160	160	160	200	220	240	260
240	280		4	160	160	180	200	220	260	280
260	280		5	160	160	180	220	240	260	300
220	240		1,5	160	160	160	180	200	220	240
220	240		2	160	160	160	180	200	220	260
240	280	2,5	3	160	160	180	200	220	260	280
260	280		4	160	160	180	220	240	260	300
280	300		5	160	180	200	220	240	280	300
220	260		1,5	160	160	160	180	200	240	260
240	260		2	160	160	160	180	220	240	260
260	280	m	3	160	160	180	200	240	260	300

/2			9	200	220	240	260	280	220	220	240	260	280	220	240	260	280	280	240	240	280	280	300	260	260	280	300	320
→ 4		9/15/9)	5,5	180	200	220	240	240	200	200	220	240	260	200	220	240	240	260	220	220	240	260	280	220	240	260	260	300
→ → → → → ~ ~ ~ ~	ge	- 60 (9/9/9 + 9/15/9)	5	160	180	200	200	220	180	180	200	220	240	180	200	220	220	240	200	200	220	240	260	200	200	240	240	280
→ → → →	mplissa	(6/6/6)	4,5	160	160	180	180	200	160	160	180	200	220	160	180	200	200	220	180	180	200	220	240	180	200	200	220	240
Y ZZ EE	avec re	Portée / composition 27	4	160	160	160	160	180	160	160	160	180	200	160	160	180	180	200	160	160	180	200	220	160	180	180	200	220
	Dimensionnement préliminaire avec remplissage calcaire 40 kg/m^2 , $w_{\text{inst}} \le \ell/300$	Portée /	3,5	160	160	160	160	160	160	160	160	160	180	160	160	160	160	180	160	160	160	180	200	160	160	160	180	200
	ent préli ¹² w _{inst} ≤		3	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	180	160	160	160	160	180
	ionnem 40 kg/m	Charges	variables (n _k)	1,5	2	3	4	5	1,5	2	3	4	5	1,5	2	3	4	5	1,5	2	3	4	5	1,5	2	3	4	5
	Dimensionnement préli calcaire $40 \text{ kg/m}^2 \text{ w}_{\text{inst}} \le$	Charges	perma- nentes (g _k)			-					1,5					2					2,5					ю		

5


280



CONTENT

1

3

	10	400	-	,	-	ı	-	1	-	-	ı		1	,	1	1	-	1	ı	-	-	1	1	1	1	,
	9,5	380	400		1	ı	400	1	-	-	-	-	-	,	1	-	-	1	1	-	-	-	1	1	-	
	6	340	360	,	1	-	360	380	-	-	-	400	400	,	-	-	-	1	1	ı	-	1	1	1	-	
	8,5	320	340	380	1	1	340	360	400	-	-	360	380		1	-	380	400	1	-	-	1	-	1	-	,
	80	300	320	360	380	400	320	340	380	400	-	340	360	400	1	-	360	360	ı	-	-	380	380	1	1	1
	7,5	280	300	320	360	380	300	300	340	360	380	320	320	360	380	400	340	340	380	400	-	360	360	400	1	,
	7	260	280	300	320	340	280	280	320	340	360	280	300	340	360	360	300	320	340	360	380	320	320	360	380	400
9) - 27 (9/9/9)	6,5	240	240	280	300	320	240	260	280	300	320	260	280	300	320	340	280	280	320	340	340	300	300	340	340	360
sition 27 (9/9/	9	220	220	240	260	280	220	240	260	280	300	240	240	280	300	300	260	260	280	300	320	260	280	300	320	320
Portée / composition 27 (9/9/9) - 27 (9/9/9)	5,5	200	200	220	240	260	200	220	240	260	260	220	220	240	260	280	220	240	260	280	280	240	240	260	280	300
Pc	5	180	180	200	220	220	180	200	220	220	240	200	200	220	240	240	200	200	240	240	260	220	220	240	260	260
	4,5	160	160	180	200	200	160	160	180	200	200	180	180	200	200	220	180	180	200	220	220	200	200	220	220	240
	4	160	160	160	160	180	160	160	160	180	180	160	160	180	180	180	160	160	180	180	200	160	160	180	200	200
	3,5	160	160	160	160	160	160	160	160	160	160	160	160	160	160	180	160	160	160	160	180	160	160	160	160	180
	3	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160
Charges	variables (n _k)	1,5	2	8	4	5	1,5	2	3	4	5	1,5	2	е	4	5	1,5	2	е	4	5	1,5	2	3	4	5
Charges	perma- nentes (g _k)			-					1,5					2					2,5					8		

Dimensionnement préliminaire avec remplissage calcaire $80\,\text{kg/m}^2\,\text{w}_{\text{inst}} \leq 2/300\,$

2,5

 7,

 1,5

7,

(g)

1,5

7,5

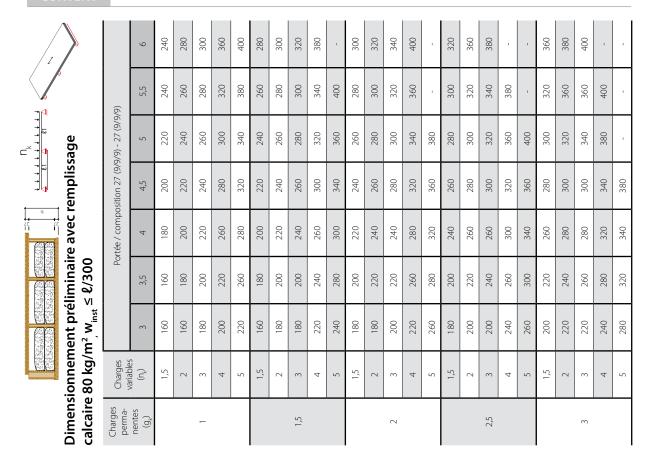
Dimensionnement préliminaire avec remplissage

Dimensionnement préliminaire avec remplissage calcaire 80 kg/m² w_{inst} $\leq \ell/300$

(6/9		L
9) + 33 (9/1		L
ition 27 (9/9/		L
tée / compos		
Por		L
		r
Charges	variable	variables
Charges	berma-	nentes
9/15/9)		
+ 6/6/6) 09 -		
nn 27 (9/9/9)		
	Ū	Charges Charges perma-

Pe G	ou e				·				l					()							
	9	220	220	240	260	280	220	240	260	280	280	240	240	260	280	300	240	260	280	300	320
9/15/9)	5,5	200	200	220	240	260	200	220	240	240	260	220	220	240	260	280	220	220	260	260	300
Portée / composition 27 (9/9/9) - 60 (9/9/9 + 9/15/9)	5	180	180	200	220	240	180	200	220	220	240	200	200	220	240	260	200	200	220	240	260
n 27 (9/9/9)	4,5	160	160	180	200	220	160	180	180	200	220	180	180	200	220	240	180	180	200	220	240
/ compositic	4	160	160	160	180	200	160	160	160	180	200	160	160	180	200	220	160	180	180	200	220
Portée	3,5	160	160	160	160	180	160	160	160	160	180	160	160	160	180	200	160	160	160	180	200
	3	160	160	160	160	160	160	160	160	160	160	160	160	160	160	180	160	160	160	160	180
Charges	(n _k)	1,5	2	3	4	5	1,5	2	3	4	5	1,5	2	3	4	5	5'1	2	3	4	5
Charges perma-	nentes (g _k)			-				1,5			7					2,5					

CONTENT


/	00		9	200	240	260	320	360	240	260	280	340	380	260	280	320	360	,	280	320	340	380	-	320	340	360	400	
	Dimensionnement préliminaire pour caisson vide $w_{\rm inst} \le \ell/300$	(6/	2'2	200	220	240	300	340	220	240	260	320	360	240	260	300	340	380	760	300	320	360	400	280	320	340	380	1
13	vide w _{ir}	9/9) - 27 (9/9,	5	180	200	220	780	320	200	220	240	300	340	220	240	097	320	360	240	260	087	340	088	760	300	300	340	400
13	caisson	Portée / composition 27 (9/9/9) - 27 (9/9/9)	4,5	160	180	220	260	280	180	200	220	260	300	200	220	240	280	320	220	240	260	300	340	240	260	280	320	360
*	e pour	tée / compo	4	160	160	200	220	260	160	180	200	240	280	180	200	220	260	300	200	220	240	280	300	220	240	260	300	320
1 4 27	nt Iiminair	Por	3,5	160	160	180	200	240	160	160	180	220	240	160	180	200	240	260	180	200	220	240	280	200	220	220	260	300
	ent pré		3	160	160	160	180	200	160	160	160	200	220	160	160	180	200	240	160	180	200	220	240	180	200	200	220	260
	ionnem	Charges	(n _k)	1,5	2	3	4	5	1,5	2	3	4	5	1,5	2	3	4	5	1,5	2	3	4	5	1,5	2	3	4	5
	Dimens	Charges perma-	nentes (g _k)			-					1,5					2					2,5					ĸ		
1			9	220	260	280	340	380	260	280	300	360	400	280	300	340	380	1	300	340	360	400	-	340	360	380		
→1¢1		(6.	5,5	220	240	260	320	360	240	260	280	340	380	260	280	300	360	400	280	320	320	380	-	300	340	340	400	1
13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	sage	Portée / composition 27 (9/9/9) - 27 (9/9/9)	5	200	220	240	280	340	220	240	260	300	340	240	260	280	320	360	260	280	300	340	380	280	300	320	360	400
t t t t t t t t t t t t t t t t t t t	empliss	sition 27 (9/9	4,5	180	200	220	260	300	200	220	240	280	320	220	240	260	300	340	240	260	280	320	360	260	280	300	340	380
у 27 27 1	e avec r)	tée / compo	4	160	180	200	240	280	180	200	220	260	300	200	220	240	280	300	220	240	260	280	320	240	260	260	300	340
	liminair ≤ ℓ/300	Por	3,5	160	160	180	220	240	160	180	200	220	260	180	200	220	240	280	200	220	220	260	280	220	240	240	280	300
	ent pré 'm², w _{inst}		3	160	160	160	200	220	160	160	180	200	220	160	180	180	220	240	180	180	200	220	260	180	200	220	240	260
	ionnem 40 kg/	Charges	(n _k)	1,5	2	3	4	5	1,5	2	3	4	5	1,5	2	3	4	5	5′1	2	3	4	5	1,5	2	3	4	5
Dimensionnement préliminaire avec remplis calcaire 40 kg/m^2 , w _{inst} $\leq 2/300$		Charges perma-	nentes (g _k)			-					1,5					2					2,5					ĸ		

2

_

CONTENT

LOGICIEL POUR LE DIMENSIONNEMENT

Le module logiciel standard vous permet de :

- Définir le système statique, les chargements et l'évaluation des vibrations
- Prendre en compte aussi la charge de la pose en pente pour utilisation en toiture
- Calculer conformément à l'ETA-11/0310 et aux annexes nationales d'EUROCODE 5
- L'exportation en RTF de la note de calcul, en version courte ou détaillée

Logiciel module individuel

• sert à l'optimisation de la solution des conceptions non-standards dans vos projets. Par exemple quand il n'est pas possible d'augmenter la hauteur de l'élément en considération de l'espace donné, il y a une solution proposée sous la forme du doublage des nervures ou du remplacement des nervures du panneau multicouche (SWP) par un autre matériau. La base est celle du caisson ELEMENT: avec le panneau supérieur et inférieur (SWP) et les nervures. Ce nouveau module est conçu pour le dimensionnement des sections inhabituelles qui se différencient des normes fixées dans ETA – 11/0310.

l'installation du logiciel est gratuite!

3

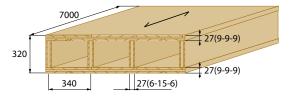
/

NOVATOP ELEMENT EXEMPLE DE DIMENSIONNEMENT

Informations générales

Le présent document présente un calcul détaillé et une évaluation effectués en conformité avec les termes des normes DIN EN 1995-1-1/NA/ A1 (2012-02-) valables en Allemagne sur l'exemple d'un élément porteur (charge des planches et sens des fils des couches supérieures dans les sens de l'écart).

On évalue les états limites en fonction de la capacité portante et de la charge.


Système et charge

Matériau:

NOVATOP ELEMENT porteur type A1 $h = 320 \, mm$

(Composition: 9/9/9 - 6/15/6 - 9/9/9, t = 27 mm)

Modèle d'une poutre sur deux appuis $\ell = 7000 \text{ mm}$ Largeur de référence pour le calcul $b = 340 \, \text{mm}$ e = 340 mmEspacement des nervures

Panneau SWP		9/9/9	6/15/6
Module axial longitudinal $E_{m,0}$	N/mm²	7800	5300
Resistance caractéristique en flexion f _{m,0}	N/mm²	20,3	13,9
Resistance caractéristique en traction $f_{t,0}$	N/mm²	11,5	9,3
Resistance caractéristique en compression f _{c0}	N/mm²	20,3	13,9
Resistance caractéristique au cisaillement f _{v,k}	N/mm²	3,0	3,0
Resistance caractéristique au cisaillement du joint de colle f _{v,qlue,k}	N/mm²	4,0	4,0
Module de cisaillement G	N/mm²	600	600

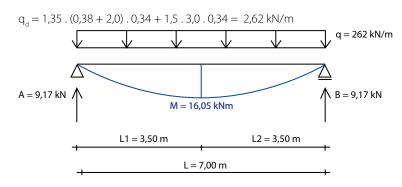
Valeurs caractéristiques indiquées dans le tableau :

 $I_{eff} = 3,01 \times 10^8 \text{ mm}^4$ Module d'Inertie Efficace $E_{v} = 11,0 \times 10^{3} \text{ N/mm}^{2}$ Module d'elasticité longitudinal $Ei_{eff} = 3,31 \times 10^{12} \text{ Nmm}^2$ Rigidité de flexion effective

 $z_{i} = 160 \, \text{mm}$ Distance de l'axe du centre de gravité au bord inférieur

Moment statique du caisson $S_1 = 1,07 \times 10^6 \text{ mm}^3$ Moment statique dans le sens du joint collé $S_{3} = 9,54 \times 10^{5} \text{ mm}^{3}$

 $k_{def} = 0,60$ Coefficient de fluage


2.2 Charge:

Classe de service $g_1 = 0.38 \text{ kN/m}^2$ Poids propre de l'élément : $g_k = 2,00 \text{ kN/m}^2$ Charge permanente:

 $q_{k} = 3,00 \text{ kN/m}^2$; Categorie C Charge utile: $k_{\text{mod}} = 0.90$ $\Psi_2 = 0.60$ \rightarrow

CONTENT

2.2.1 Modélisation et chargements

Moment de flexion maximum

$$M_d = \frac{q_d \cdot \ell^2}{8} = \frac{2,62 \cdot 7,00^2}{8} = 16,05 \text{ kNm}$$

Cisaillement maximum

$$V_d = \frac{q_d \cdot \ell}{2} = \frac{2,62 \cdot 7,00}{2} = 9,17 \text{ kN}$$

2.2.2 Évaluation de l'applicabilité

Récapitulatif de la charge

$$q_{k.g} = (0.38 + 2.0) \cdot 0.34 = 0.809 \text{ kN/m}$$

$$q_{k,q} = 3.0 \cdot 0.34 = 1.02 \text{ kN/m}$$

3 Vérifications structurelles aux ELU

3.1 Vérification en flexion

$$O_{m,d} = \frac{M_d}{I_{eff}} \cdot \frac{E_{m,0}}{E_v} \cdot z_s = \frac{16.1 \cdot 10^6}{3.01 \cdot 10^8} \cdot \frac{7800}{11000} \cdot 160 = 6.06 \text{ N/mm}^2$$

$$f_{m,d} = \frac{f_{m,0} \cdot k_{mod}}{\gamma_m} = \frac{20.3 \cdot 0.9}{1.3} = 14.1 \text{ N/mm}^2$$

$$\frac{O_{m,d}}{f_{m,d}} = \frac{6,06}{14,1} = 0,43 < 1,0$$

3.2 Vérification de la traction dans le panneau SWP inférieur

Distance de l'axe de gravité du caisson à l'axe de la planche inférieure :

$$z_i = z_s - \frac{9+9+9}{2} = 146,5 \text{ mm}$$

3

NOVATOP ELEMENT EXEMPLE DE DIMENSIONNEMENT

CONTENT

$$O_{t,d} = -\frac{M_d}{I_{eff}} \cdot \frac{E_{m,0}}{E_v} \cdot z_i = -\frac{16.1 \cdot 10^6}{3.01 \cdot 10^8} \cdot \frac{7800}{11000} \cdot 146.5 = 5.56 \text{ N/mm}^2$$

$$f_{t,d} = \frac{f_{t,0} \cdot k_{mod}}{\gamma_m} = \frac{11.5 \cdot 0.9}{1.3} = 7.96 \text{ N/mm}^2$$

$$\frac{O_{t,d}}{f_{t,d}} = \frac{5.56}{7.96} = 0.70 < 1.0$$

3.3 Verification du cisaillement

3.3.1 Cisaillement dans le centre de la section

$$T_{v,d} = \frac{V_d \cdot S_1}{I_{eff} \cdot t} = \frac{9,17 \cdot 10^3 \cdot 1,07 \cdot 10^6}{3,01 \cdot 10^8 \cdot 27} = 1,21 \text{ N/mm}^2$$

$$f_{t,d} = \frac{3.0,9}{1,3} = 2,08 \text{ N/mm}^2$$

$$\frac{T_{v,d}}{f_{v,d}} = \frac{1,21}{2,08} = 0,58 < 1,0$$

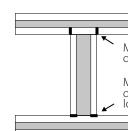
3.3.2 Cisaillement dans le panneaux SWP

Nature de la defaillance 1 dans le cisaillement selon ETA.11/0310 Une défaillance des lamelles de surface adhérant au joint collé.

$$T_{v,1,d} = \frac{V_d \cdot S_2}{I_{eff} \cdot t} = \frac{9,17 \cdot 10^3 \cdot 9,54 \cdot 10^5}{3,01 \cdot 10^8 \cdot 27} = 1,08 \text{ N/mm}^2$$

$$f_{v,k} = \frac{3.0,9}{1,3} = 2,08 \text{ N/mm}^2$$

$$\frac{T_{v,1,d}}{f_{v,k}} = \frac{1,08}{2,08} = 0,52 < 1,0$$


3.3.3 Cisaillement du joint de colle

Nature de la rupture 2 dans le cisaillement selon ETA-11/0310 On ne prend en compte que l'épaisseur t _{netto} des fibres, au plan de collage, des membrures orientées longitudinalement.

$$T_{v,2,d} = \frac{V_d \cdot S_2}{I_{eff} \cdot t_{netto}} = \frac{9,17 \cdot 10^3 \cdot 9,54 \cdot 10^5}{3,01 \cdot 10^8 \cdot (2 \cdot 6)} = 2,42 \text{ N/mm}^2$$

$$f_{v,d} = \frac{4.0,9}{1.3} = 2,77 \text{ N/mm}^2$$

$$\frac{T_{v,2,d}}{f} = \frac{2,42}{2.77} = 0.88 < 1.0$$

Mode de rupture 1 (prise en compte de l'épaisseur des membrures)

Mode de rupture 2 (prise en compte des plis des membrures oriéntés longitudinalement) 1

2

4 Vérifications structurelles aux ELS

4.1 Flèche instantanée

Quotient de la flexion :

$$w_{b,g,inst} = \frac{5}{384} \cdot \frac{q_{k,g} \cdot \ell^4}{EI_{eff}} = \frac{5}{384} \cdot \frac{0,809 \cdot 7000^4}{3,31 \cdot 10^{12}} = 7,64 \text{ mm}$$

$$W_{b,q,inst} = \frac{5}{384} \cdot \frac{q_{k,q} \cdot \ell^4}{EI_{eff}} = \frac{5}{384} \cdot \frac{1,02 \cdot 7000^4}{3,31 \cdot 10^{12}} = 9,64 \text{ mm}$$

Influence du cisaillement :

$$w_{v,g,inst} = \frac{1}{8} \cdot \frac{q_{k,g} \cdot \ell^2}{G.A} = \frac{1}{8} \cdot \frac{0,809 \cdot 7000^2}{600. \, (266.27)} = 1,15 \; mm$$

$$w_{\text{v,q,inst}} = \frac{1}{8} \cdot \frac{q_{\text{k,q}} \cdot \ell^2}{G.A} = \frac{1}{8} \cdot \frac{1,02 \cdot 7000^2}{600. \, (266.27)} = 1,45 \text{ mm}$$

Flèche instantanée causée par la charge permanente :

$$W_{g,inst} = W_{b,g,inst} + W_{v,g,inst} = 7,64 + 1,15 = 8,79 \text{ mm}$$

Flèche instantanée causée par la charge utile :

$$W_{q,inst} = W_{b,q,inst} + W_{v,q,inst} = 9,64 + 1,45 = 11,09 \text{ mm}$$

Flèche instantanée (combinaison caractéristique):

$$W_{inst} = W_{g,inst} + W_{q,inst} = 8,79 + 11,09 = 19,9 \text{ mm}$$

4.2 Flèche finale

$$W_{fin} = W_{g.inst}$$
. $(1 + k_{def}) + W_{g.inst}$. $(1 + \Psi_2 + k_{def})$

$$W_{6n} = 8.79 \cdot (1 + 0.6) + 11.09 \cdot (1 + 0.6 \times 0.6) = 29.1 \text{ mm}$$

4.3 Flèche finale pure (combinaison quasi permanente)

$$W_{\text{net.fin}} = W_{\text{g.inst}}$$
. $(1 + k_{\text{def}}) + W_{\text{g.inst}}$. $(1 + k_{\text{def}})$. Ψ_2

$$W_{\text{net fin}} = 8,79. (1 + 0,6) + 11,09. (1 + 0,6). 0,6 = 24,7 \text{ mm}$$

4.4 Contrôle des valeurs finales recommandées

4.4.1 Flèche instantanée

$$W_{inst} = 19.9 \text{ mm} < \frac{\ell}{300} = \frac{7000}{300} = 23.3 \text{ mm}$$
 $(\eta = 0.85)$

4

NOVATOP ELEMENT EXEMPLE DE DIMENSIONNEMENT

CONTENT

4.4.2 Flèche finale

$$w_{fin} = 29.1 \text{ mm} < \frac{\ell}{150} = \frac{7000}{150} = 46.7 \text{ mm}$$
 $(\eta = 0.62)$

4.4.3 Flèche finale nette

$$w_{net,fin} = 24.7 \text{ mm} < \frac{\ell}{250} = \frac{7000}{250} = 28.0 \text{ mm}$$
 $(\eta = 0.88)$

5 Comparaison avec la portée 7,50 m

En choisissant de 7,50 m pour un élément identique avec une charge identique, il en résulte :

$$w_{b,g,inst} = \frac{5}{384} \cdot \frac{q_{k,g} \cdot \ell^4}{EI_{eff}} = \frac{5}{384} \cdot \frac{0,809.7500^4}{3,31.10^{12}} = 10,1 \text{ mm}$$

$$W_{b,q,inst} = \frac{5}{384} \cdot \frac{q_{k,q} \cdot \ell^4}{EI_{eff}} = \frac{5}{384} \cdot \frac{1,02.7500^4}{3,31.10^{12}} = 12,7 \text{ mm}$$

Déformation par cisaillement :

$$w_{v,g,inst} = \frac{1}{8} \cdot \frac{q_{k,g} \cdot \ell^2}{G \cdot A} = \frac{1}{8} \cdot \frac{0,809 \cdot 7500^2}{600 \cdot (266 \cdot 27)} = 1,32 \text{ mm}$$

$$w_{v,q,inst} = \frac{1}{8} \cdot \frac{q_{k,g} \cdot \ell^2}{G \cdot A} = \frac{1}{8} \cdot \frac{1,02 \cdot 7500^2}{600 \cdot (266 \cdot 27)} = 1,66 \text{ mm}$$

$$W_{inst} = 10.1 + 12.7 + 1.32 + 1.66 = 25.6 \text{ mm}$$

$$W_{inst} = 25,6 \text{ mm} > \frac{\ell}{300} = \frac{7500}{300} = 25,0 \text{ mm}$$

$$W_{net \, fin} = (10.1 + 1.32) \cdot (1 + 0.6) + (12.7 + 1.66) \cdot (1 + 0.6) \cdot 0.6 = 32.1 \text{ mm}$$

$$W_{\text{net,fin}} = 32.1 \text{ mm} > \frac{\ell}{250} = \frac{7500}{250} = 30.0 \text{ mm}$$

→ Élément ne convient pas.

2

2

NOVATOP ELEMENT PROPRIETES MECANIQUES VIBRATOIRES

Contrôle de la vibration pour les éléments NOVATOP effectué en conformité avec les termes de la norme DIN EN 1995-1-1 (eurocode 5), le cas échéant avec les commentaires de la norme DIN 1052-2004-08

Critère de fréquence

Comme le prescrit l'eurocode 5 article 7.3.3 planchers des bâtiments habités, il faut vérifier si la fréquence propre est de f1 ≤ 8 Hz ou de f1 > 8 Hz. Pour le calcul de cette fréquence propre, dans le cas de planchers posés sur toute leur périphérie est :

$$\boldsymbol{f_0} = \boldsymbol{k_f} \cdot \frac{\pi}{2 \cdot \ell^2} \cdot \sqrt{\frac{EI_\ell}{m}}$$

Fréquence propre sans égard à la répartition transversale de la charge

coefficient pour une poutre continue

Portée du plancher en m

El, rigidité longitudinale (pour la portée) en Nm²/m

m poids du plancher en kg/m² au cours d'une action quasi permanente (g + ψ_2 , p)

Tableau 0-1 – Coefficient K, pour la prise en compte d'une action continue sur trois appuis (Mohr 2001) une poutre continue sur trois appuis.

ℓ ₁ / ℓ	1,0	0,9	0,8	0,7	0,6	0,5	0,4	0,3	0,2	0,1	0
\mathbf{k}_{f}	1,00	1,09	1,15	1,20	1,24	1,27	1,30	1,33	1,38	1,42	1,56

Prise en compte d'une répartition transversale de la charge :

$$\boldsymbol{f}_{_{1}}=\boldsymbol{f}_{_{0}}\cdot\sqrt{\,\ell+\frac{\,\ell}{\,\alpha^{4}}} \qquad \qquad \alpha=\frac{\boldsymbol{b}}{\ell}\cdot\sqrt[4]{\frac{\,E\boldsymbol{I}_{_{\ell}}}{\,E\boldsymbol{I}_{_{L}}}}$$

$$\alpha = \frac{b}{\ell} \cdot \sqrt[4]{\frac{EI_{\ell}}{EI_{b}}}$$

avec:

Fréquence propre sans égard à la répartition transversale de la charge

Coefficient pour la prise en compte du coefficient de la rigidité transversale

Largeur de la travée du plafond en m

 El_{h} rigidité transversale (largeur) pour m en Nm²/m, $EI_{e} > EI_{h}$

En conformité avec Hamm, Richter (2009), on peut utiliser la rigidité transversale suivante pour les planchers en bois :

Plancher en bois avec assemblages par clous ou par boulons

 $EI_{b} = 0.0005 EI_{c}$

Plancher en bois avec joints collés

 $EI_{b} = 0.3 EI_{e}$

Comme il est assez difficile de trouver des références sur la rigidité transversale, il faut utiliser la littérature spécialisée, on recommande d'utiliser la rigidité transversale El, = 0,0005 El, afin de prendre une marge de sécurité.

Si la fréquence propre est de f. > 8 Hz, il faut que d'autres exigences, conformément à l'Eurocode 5, (ci-après dans les articles 2 et 3) soient respectées.. Si la fréquence propre est de f. < 8 Hz, une vérification spécifique (ci-après dans les articles 4 et 5) doit être effectuée. Ce contrôle sera effectué en conformité avec les commentaires de la norme DIN 1052:2004, aucun procédé n'étant mentionné dans l'eurocode 5.

Flèche causée par une charge individuelle F = 1 kN

$$\frac{W}{f} \le \alpha \quad mm/kN$$

avec:

flèche verticale instantanée maximale causée par une force statique concentrée F (1 kN) qui exerce une action dans un endroit quelconque sur le plafond avec la prise en compte de la répartition de la charge

valeur limite selon l'image 1

NOVATOP ELEMENT PROPRIETES MECANIQUES VIBRATOIRES

CONTENT

Pour une poutre simple, le cas échéant pour une planche à une travée qui est chargé(e) par une charge ponctuelle, il est indiqué :

$$\mathbf{w} = \frac{\ell}{48} \frac{\mathbf{F} \cdot \ell^3}{\mathbf{EI}_{\ell} \cdot \mathbf{b}_{\mathrm{F}}}$$

$$b_F = \frac{\ell}{1,1} \cdot \sqrt[4]{\frac{EI_\ell}{EI_b}} = \frac{b}{1,1 \cdot \alpha}$$

ou:

b_F largeur d'une planche exerçant une action conjointe pour une charge ponctuelle

Les valeurs limites a et b sont recommandées et une relation entre a et b est indiquée dans le graphique 1. Les valeurs inférieures de a (sens « 1 ») répondent à une réaction du plafond optimale, les valeurs supérieures de a (sens « 2 ») répondent à une réaction peu satisfaisante du plafond. Pour satisfaire aux exigences plus élevées, il faut respecter les valeurs limites dans l'intervalle 1 ($\alpha \le 1$).

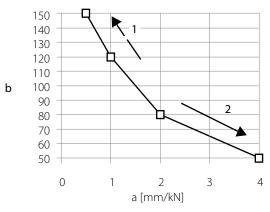


Image 1 : Valeurs limites en conformité avec l'Eurocode 5

3 Velocité

 $v \le b^{(fl.\zeta-1)}$

ou:

- v velocité de la réaction à une impulsion unitaire en m/s
- b valeur limite selon l'image 1 (de a≤1 résulte de b≥120)
- ζ amortissement proportionnel modal (tableau 0-2)

Tableau 0-2 – valeurs de l'amortissement (selon les commentaires de la norme DIN 1052:2004, le cas échéant de SIA 265)

Composition du plancher	ζ
Planchers sans revêtement flottants	0,01
Planchers en panneaux massifs collés avec un revêtement flottant	0,02
Solivage et panneaux de contreventement avec joints mécaniques avec un revêtement flottant	0,03

Pour les éléments NOVATOP, il n'y a pas de valeurs résultant d'une expérimentation concernant les valeurs de l'amortissement. On prendra $\zeta = 0,01$ par sécurité.

NOVATOP ELEMENT PROPRIETES MECANIQUES VIBRATOIRES

CONTENT

On a:

$$v = \frac{4 \cdot (0,4 + 0,6 \cdot n_{40})}{m \cdot b \cdot \ell + 200} \qquad a \qquad n_{40} = \left\{ \left(\left(\frac{40}{f_1} \right)^2 - 1 \right) \cdot \left(\frac{b}{\ell} \right)^4 \frac{EI_{\ell}}{EI_{b}} \right\}^{0,25}$$

ou:

m poids du plancher en kg/m2 quasi permanent $(g + \psi_2, p)$

- b largeur d'une travée du plancher en m
- l portée du plancher en m
- n an nombre de formes avec une fréquence de base inférieure à 40Hz
- 4 Contrôle spécial de la velocité de l'oscillation par l'effet de la marche sur les 1 = 55 Ns, t = 0,05 s

 $v \leq 6.b^{~(\mathrm{fl.}\zeta\text{-}1)}$

La prise en compte du « heeldrop », l'impact des talons , est décrite par l'impulsion s l = 55 Ns durée environ 0,05 s. L'évaluation des mesures peut révéler un rapport pour la rapidité initiale v.

$$_{V}\cong\ \frac{950\;.\;\alpha}{f_{_{0}}\;.\;m\;.\;b\;.\;\ell\;.\;\gamma}$$

Cette vérification satisfait déjà aux formules précédentes.

Vérifications spécifiques de l'accélération, contrôles de la résonance de l'oscillation les valeurs limites suivantes sont utilisables selon les commentaires de la norme DIN 1052:2004

$$a = \frac{56}{m \cdot b \cdot \ell \cdot \zeta \cdot \gamma}$$

Les valeurs limites suivantes sont utilisables pour des contrôles spécifiques de l'accélération de l'oscillation selon les commentaires de la norme DIN 1052:2004

a < 0,1 m/s² Convenables

a < 0,35 bis 0,7 m/s² Perceptibles, mais non gênantes

a > 0,7 m/s² Gênantes

Bibliographie:

Mohr, B (2001): Schwingungen von Wohnungsdecken aus Holz, Stahl und Beton; Vorschläge für eine zutreffende Bewertung. In: Tagungsband "Ingenieurholzbau, Karlsruher Tage 2001". Herausgeber: Bruderverlag Albert Bruder GmbH, Karlsruhe.

Blaß, H.J.; Ehlbeck, J.; Kreuzinger, H.; Steck, G. (2004). Erläuterungen zu DIN 1052:2004-08. DGfH Innovations- und Service GmbH, München. Bruderverlag, Karlsruhe.

Hamm, P.; Richter, A. (2009): Bemessungs- und Konstruktionsregeln zum Schwingungsnachweis von Holzdecken. In: Fachtagungen Holzbau 2009. Leinfelden- Echterdingen, 26. November 2009. Herausgeber: Landesbeirat Holz Baden-

Württemberg e.V., Stuttgart. S. 15-29.

NOVATOP ELEMENT PROPRIETES PHYSIQUES

CONTENT

ISOLATION THERMIQUE:

U- Coefficient de transfert thermique

Hauteur h (mm)	$\begin{array}{l} \text{Isolation min\'erale} \\ \lambda = 0,\!035 \text{ W/mK} \end{array}$	Isolation en fibre de bois $\lambda = 0.038 \text{W/mK}$				
	U-valeur W/m²K	U-valeur W/m²K				
160	0,33	0,35				
200	0,26	0,27				
240	0,21	0,22				
280	0,18	0,19				
320	0,15	0,16				

Envizol TB OH 26/50

Textile non-tissé obtenu par consolidation thermique. Fabriqué entièrement à partir de matières synthétiques dans une proportion de 90% de fibres recyclées et de 10% de fibres vierges.

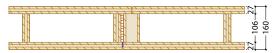
Épaisseur : 30 à 100 mm Densité : 26/50 kg/m³

Dimensions standard: 1200 x 600 mm

 $\lambda = 0.033 \text{ W/mK}$

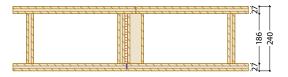
Résistance à la diffusion (µ) : 2,2

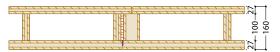
3

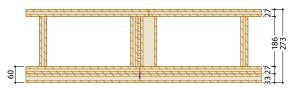

NOVATOP ELEMENT RÉSISTANCE AU FEU

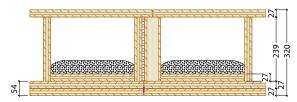
CONTENT

RÉSISTANCE AU FEU:


Version standard avec le panneau de base 27 mm (type A2) Numéro de protocole : PK2-03-22-013-C-0 (PAVUS a.s., CZ)


Version standard avec le panneau de base 27 mm (type A2) Numéro de protocole : PR-18-0325 (FIRES, SK)


Version standard avec le panneau de base 33 mm (type B2) Déterminé par le calcul


Version avec un panneau de base renforcé 60 mm (type C2) Numéro de protocole : PR-18-0325 (FIRES, SK)

Version avec un panneau de fond renforcé 2x 27mm + le calcaire 40 kg/m^2 posé sur le remplissage SWP 27 mm Numéro de protocole : PK2-03-22-005-C-0, (PAVUS a.s., CZ)

Les protocoles actuels sur le classement de résistance au feu peuvent être téléchargés sur: https://novatop-system.fr/telechargements/certificats/

3

4

NOVATOP ■ ■ ■ •

NOTES

CONTENT

2

1

3

4

•

NOVATOP ELEMENT ISOLATION PHONIQUE

Bruit de choc (dB)

CONTENT

Composition du plancher

NOVATOP ELEMENT 240 MM Panneau massif 3-plis en épicéa ép. 27 mm

Membrures en bois 186 mm

Panneau massif 3-plis en épicéa ép. 27 mm

Parquets collés 10 mm

Chape béton 80 mm Laine minérale - isolation des bruits de choc 20 mm Polystyrène 30 mm $L'_{tot} = 49 **$ **NOVATOP ELEMENT 350 MM** Panneau trois plis 27 mm Évaluation selon Membrures en bois 263 mm + gravillon calcaire 40 kg/m² ISO 717-1/SIA 181/2006 ISO 717-2/SIA 181/2006 Panneau massif 3-plis 27 + 33 mm (REI 60) Basé sur des mesures in situ de l'ouvrage (2007) BFH Architektur, Holz- und Bau, CH-Biel Parquets collés 10 mm Chape béton 80 mm Laine minérale – isolation des bruits de choc 20 mm Polystyrène 30 mm $L'_{tot} = 59 **$ **NOVATOP ELEMENT 350 MM** Panneau massif 3-plis 27 mm Évaluation selon Membrures en bois ISO 717-1/SIA 181/2006 ISO 717-2/SIA 181/2006 Panneau massif 3-plis 27 + 33 mm (REI 60) Basé sur des mesures in situ de l'ouvrage (2007) BFH Architektur, Holz- und Bau, CH-Biel Panneaux OSB 2x15 mm R + L aine minérale – isolation des bruits de choc 30 mm **NOVATOP ELEMENT 240 MM** Panneau massif 3-plis 27 mm Évaluation selon Membrures en bois 186 mm + gravillon calcaire 40 kg/m² ISO 717-2/ISO 140-6 Basé sur des mesures en laboratoire (2007) Center of building construction, Engineering, CZ - Zlin = 62 Revêtement de sol tapis 10 mm Revêtement de sol PVC 3,5 mm **NOVATOP ELEMENT 240 MM** Panneau massif 3-plis 27 mm Évaluation selon Membrures en bois 186 mm + gravillon calcaire 40 kg/m ISO 717-2/ISO 140-6 Panneau massif 3-plis 27 mm Basé sur des mesures en laboratoire (2007) Center of building construction, Engineering, CZ - Zlin $L_{n,w} = 93$ **NOVATOP ELEMENT 240 MM** Évaluation selon Panneau massif 3-plis 27 mm Membrures en bois 186 mm ISO 717-2/ISO 140-6 ISO 717-1/ISO 140-3 Panneau massif 3-plis 27 mm Basé sur des mesures en laboratoire (2007) Center of building construction, Engineering, CZ - Zlin $L_{n,w} = 88$ **NOVATOP ELEMENT 240 MM** Panneau massif 3-plis 27 mm Évaluation selon Membrures en bois 186 mm + gravillon calcaire 40 kg/m ISO 717-1/ISO 140-3 ISO 717-2/ISO 140-6 Panneau massif 3-plis 27 mm Basé sur des mesures en laboratoire (2007) Center of building construction, Engineering, CZ - Zlin **NOVATOP ELEMENT 240 mm** Panneau 3-plis en épicéa d'épaisseur 27 mm Évaluation selon Grille en bois de 180 mm, remplissage du gravier calcaire ISO 717-1/ISO 10140-2 ISO 717-2/ISO 10140-3 80 kg/m² Panneau 3-plis en épicéa d'épaisseur 33 mm Basé sur des mesures en laboratoire (2015); Centrum stavebního inženýrství, a.s., Centre de Génie civil s.a., Praque, CZ, lieu de travail Zlín (n. de protocole 134/15) Panneau Fermacell ép. 20 mm Panneau Steico standard ép. 8 mm Carreaux de béton ép. 38 mm, 90 kg/m Panneau Steico Therm ép. 20 mm **NOVATOP ELEMENT 240 MM** Panneau massif 3-plis ép. 27 mm Évaluation selon Membrures en bois 186 mm ISO 717-2/SIA 181/2006 ISO 717-1/SIA 181/2006 Panneau massif 3-plis ép. 27 mm Basé sur des mesures en laboratoire (2007) Center of building construction, Engineering, CZ - Zlin Panneau OSB ép. 22 mm Panneau Steico Standard ép. 8 mm Carreaux bétons ép. 38 mm, 90 kg/m² Panneau steico Therm ép. 20 mm

ı

2

3

4

5

Évaluation selon

ISO 717-1/ISO 140-3

Basé sur des mesures en laboratoire (2007) Center of building construction, Engineering, CZ - Zlin

ISO 717-2/ISO 140-6

NOVATOP ELEMENT ISOLATION PHONIQUE

solution choisie sera dégradée par l'insertion dans la chape béton de réseaux.

 $D_{i,tot} = D_{nT_iw}(C_iC_j) = \text{mesure sur l'ouvrage, différence standard de niveau de bruit évalué selon la durée de réverbération,}$

 $L'_{tot} = L'_{offw}(C_iC_i) =$ mesure, différence standard du niveau de bruit de choc évalué selon la durée de réverbération,

R_w = mesure en laboratoire précise, sans tolérance pour le niveau d'isolation acoustique évalué,

 $L_{n,w}=$ mesure en laboratoire sans dérivation pour le niveau d'isolation acoustique évalué selon la norme,

= correction de volume,

= valeur spectrale d'adaptation pour l'évaluation des parts prioritaires de bruit de choc à basse fréquence.

NOVATOP ELEMENT USINAGE, ETIQUETAGE ET EMBALLAGE

CONTENT

USINAGE

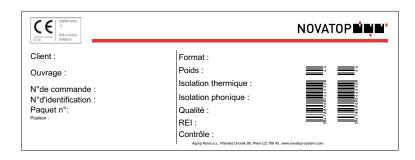
Les panneaux NOVATOP ELEMENT sont des composants techniques de grandes surfaces à membrures internes fabriqués avec des panneaux à plusieurs couches de planches d'épicéa (SWP), l'humidité pendant l'expédition est de $10\% \pm 3\%$. L'élément est composé d'une couche inférieure de base, dont l'épaisseur dépend de la résistance au feu exigée. Les raidisseurs transversaux et longitudinaux sont collés, à froid, sur la couche inférieure, leurs hauteurs dépendent de la capacité portante de l'élément. L'ensemble est fermé par un panneau multi-couches, collé sur les membrures internes. Les alvéoles entre les nervures peuvent être remplies d'isolant thermique et phonique ou elles peuvent servir pour des circuits de distribution.

L'usinage des différentes pièces se fait sur la base du plan de production CAD fourni, avec une machine de grand format CNC. Le plus souvent, les composants sont livrés préfabriqués et prêts pour le montage sans autre transformation sur le chantier.

Avertissement : Les qualités intrinsèques du bois sont conservées, il réagit alors aux changements d'humidité par retrait ou gonflement. Des conditions climatiques extrêmes peuvent causer des déformations importantes.

ETIQUETAGE ET EMBALLAGE

Chaque composant est muni d'une étiquette avec le numéro de position du panneau. Après le contrôle qualité finale, les composants sont emballés dans des bâches de protection PE (protection contre les aléas climatiques, les salissures, les dommages mécaniques) et sur le contour, ils sont resserrés par un bandeau d'emballage. Les différents paquets sont étiquetés et identifiés.


Position de l'étiquette sur le panneau

Etiquette sur le paquet

IDENT	FICATION N°	NOVATOP ™ ™™
Client :		C SUBSTRUM STATE OF STATE OF
Adress :		
Ouvrage : Descripton :		
Position :		
Pièces	N°de commande :	Date:
Poids :	Dimension :	Contrôle :

Etiquette sur le panneau

3

Л

NOVATOP ELEMENT STOCKAGE, TRANSPORT

CONTENT

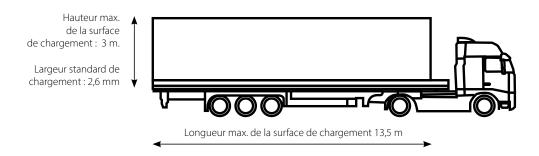
STOCKAGE

Les éléments NOVATOP SOLID doivent être stockés dans des lieux secs et protégés des intempéries, entreposés horizontalement. Une fois le colis ouvert, il doit pouvoir être re-protégé par une bâche adaptée.

En phase de montage, les composants doivent être protégés autant que possible contre les mauvaises conditions météo. Il faut éviter qu'ils demeurent sous la pluie ou sous une eau ruisselante, avant, pendant et après le montage. Nous recommandons d'utiliser une protection imperméable pour les protéger contre la pluie, les rayons de soleil et les salissures.

Upozornění: Nevhodné skladování může vést k poškození, za které výrobce nepřebírá žádné záruky.

TRANSPORT


Les panneaux sont normalement transportés par semi-remorques bâchés, et éventuellement par containers. Il faut s'assurer de l'accessibilité du chantier aux camions de livraison ou prévoir un transbordement.

Avertissement : Les composants doivent être tout le temps protégés contre les conditions climatiques. Le taux d'humidité du produit peut changer pendant un long transport dans de mauvaises conditions, nous recommandons alors un stockage intermédiaire avant utilisation pour que le composant se stabilise, en hygrométrie notamment.

Paramètres max. de chargement : 50 m³/24 t

Le transport des composant NOVATOP est possible par différents types de camions, dépendant de la taille des paquets, du déchargement et de l'accessibilité des transports sur le chantier (dont ill est nécessaire de s'assurer de l'accessibilité). Le coût du transport est défini à l'avance selon la distance à parcourir.

largeur des paquets	longueur des paquets	moyens de déchargement	possibilités d'utilisation du transport	surcoût
- 21 m	max. 6 m	grue	remorque avec bache de format standard	
≤ 2,1 m	max. o m	chariot-élevateur	remorque avec bache de format standard	
max. 2,4 m	max. 12 m	grue	remorque avec bache avec possibilité d'enlèvement du support dans la partie supérieure	
		chariot-élevateur	remorque avec bache avec possibilité de déplacement des piliers centraux	
	max. 6,5 m	grue	remorque	✓
max. 2,5 m		chariot-élevateur	remorque avec bache avec possibilité de déplacement des piliers centraux	
		grue remorque		✓
max. 2,48 m	max. 12 m	chariot-élevateur	remorque avec bache avec possibilité de déplacement des piliers centraux	
2.F. 2.m.	may 12 m	grue	✓	
2,5–3 m	max. 12 m	chariot-élevateur	remorque	✓

1

7

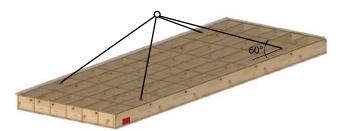
3

4

NOVATOP ELEMENT MANIPULATION, MONTAGE

CONTENT

MANIPULATION


Vu le poids des différents composants, il est conseillé d'utiliser des grues ou autres véhicules (chariots-élévateurs) pour les manipulations. Il faudra toujours vérifier l'adéquation de la charge avec la portée de l'engin de manutention. Pendant la manipulation, il faut protéger l'emballage, les surfaces et les arêtes des composants pour ne pas les endommager.

Les panneaux NOVATOP ELEMENT sont préparés pour le levage lors de leur fabrication. Les goujons escamotables sont installés dans les ouvertures réalisées dans le panneau supérieur de l'élément. Il faut manutentionner les composants à l'aide de 4 sangles et respecter un angle de 60° entre l'élément et les sangles. La charge maximale est 600 kg par point d'accroche, elle est donnée par la capacité de charge des sangles suspendues et du panneau supérieur. Le nombre des goujons escamotables de levage par panneau est déterminé par la capacité de charge des sangles individuelles, il s'agit typiquement de 4 sangles.

Les goujons escamotables sont à commander chez le fabricant (numéro d'article 011.003). Les sangles de grue, les chaînes et autres accessoires de levage doivent être assurées par le client.

Avertissement : Les composants doivent être tout le temps protégés contre les conditions climatiques.

Manipulation recommandée

MONTAGE

Les panneaux fabriqués sur mesure sont livrés directement sur le chantier. Une partie essentielle du processus de fabrication est le plan de montage, qui détermine le déroulement du montage. Chaque élément est muni d'une étiquette indiquant le numéro de position correspondant au plan de montage.

Les panneaux sont levés à l'aide d'une grue et placés sur la construction à l'aide d'outils spécifiques (tire-pousse, clamots, etc.). Nous recommandons d'assurer la mise en position précise par des sangles de serrage. Pour fixer les éléments sur les supports, il faut prendre en considération la position des nervures, le clouage ou vissage incorrect peut causer l'endommagement de l'élément.

Pour plus d'informations voir « Instruction pour le montage ».

Avertissement : Les composants doivent être tout le temps protégés contre les conditions climatiques.

L'humidité relative de l'air ambiant dans lequel les panneaux NOVATOP sont installés est de 55% pour une température de 20°C. Des fissures de bois peuvent se produire en raison de la faible humidité de l'air.

Avertissement : Les propriétés du bois des produits NOVATOP sont maintenues, le bois réagit donc aux changements de température et d'humidité par le retrait ou éventuellement par le gonflement. Le stockage et l'utilisation inappropriés dans des conditions extrêmes (températures et humidités extrêmes) peuvent entraîner des fissures et des déformations. L'endommagement du produit causé par un mauvais stockage, un traitement inapproprié, une mauvaise manipulation ou par

le non-respect des procédures de mise en oeuvre – rendra caduque la garantie du fabricant.

3

Л

NOTES

CONTENT

1

CONTENT

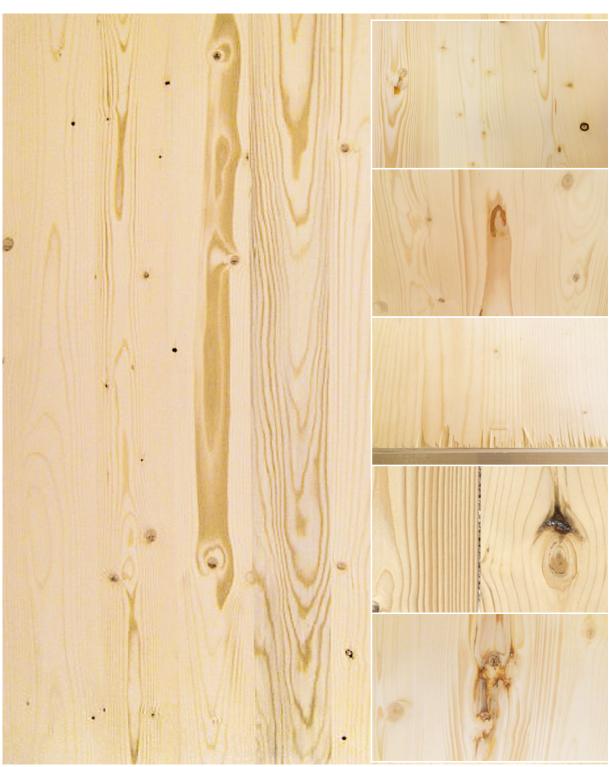
ÉPICÉA – QUALITÉ VISIBLE (B)

C'est l'élément de construction pour la conception intérieure finie. Les lamelles des plis extérieurs sont réalisées à partir de bois d'œuvre de qualité supérieure. La surface est réparée avec des nœuds ressemblant à des branches de différentes tailles, collés et mastiqués, sans aucune coloration. La résine est autorisée dans une moindre mesure. Des défauts mineurs de profondeur inférieur à 1 mm et pour des surfaces de 10 mm² maximum, sont admissibles. Des défauts sur les bords du panneau sont autorisés jusqu'à 10 mm. Les zones de coupes, et d'usinages correspondent toujours à la qualité non visible. Entre chaque panneau, des cartons sont intercalés pendant l'emballage. Classification des qualités d'après les instructions internes AGROP NOVA a.s.

2

3

Л


G

CONTENT

ÉPICÉA – QUALITÉ NON-VISIBLE (C)

Élément de construction. La surface est ponçée, les nœuds sont sains, elle est fermée, mastiquée, les fissures longitudinales sont admissibles. On peut avoir des parties bleuâtres et des restes de colle. Classification des qualités d'après les instructions internes AGROP NOVA a.s.

1

7

3

/

CONTENT

CLASSIFICATION DES QUALITÉS D'APRÈS LES INSTRUCTIONS INTERNES AGROP NOVA A.S.

Indications pour	ÉPI	CÉA
ie classement	Qualité visible (B)	Qualité non visible (C)
exigences générales joints longitudinaux	collage parfait sans joints ouverts	collage parfait joints longitudinaux réparés admissibles
Structure, structure des fibres bois de compression	bois brut, léger bois de compression admissible	sans exigences particulières
Nodosité	de diamètre noeuds noirs épisodiques-yeux admissibles jusqu'à 10 mm *(sain, solidement envahi sans exigences particulières)	sans exigences particulières
Réparation par des noeuds naturels	2 noeuds ne peuvent pas être l'un à côté de l'autre *(Admissible jusqu'à 35 mm)	sans exigences particulières
Poches de résine	admissible occasionnellement jusqu'à 5 x 50 mm, pas de concentration ni d'apparition massive	sans exigences particulières
Poches de résine réparées	admissible occasionnellement au-dessus de 5 x 50 mm	admissible au-dessus de 5 x 50 mm
Ecorce	inadmissible, *(envahi réparée jusqu'à 35 mm)	admissible occasionnellement
Fissures	fissures de surface épisodiquement admissibles, traversant fissures finales jusqu'à 50 mm de longueur admissible ccasionnellement	sans exigences particulières
Coeur /moelle/	moelle admissible de longueur totale max 600 mm une partie ou une addition de parties	sans exigences particulières
Infestation par les insectes ver	inadmissible	inadmissible, ver admissible occasionnellement
Décoloration, éponge	coloration admissible en largeur 10 mm et en longueur 200 mm	sans exigences particulières pourriture inadmissible
Epaisseur des fissures collées	max 0,3 mm	sans exigences particulières
Usinage de surface	petits défauts admissibles occasionnellement	petits défauts admissibles occasionnellement
Qualité du bord de panneau parties ébréchées assez courbes	jusqu'à 10 mm du bord admissible occasionnellement	jusqu'à 50 mm du bord admissible occasionnellement
Combinaison de différentes essences de bois	inadmissible	inadmissible
Largeur de chaque morceau - excepté l'extérieur	min 60 mm	sans exigences particulières
Motif en bois	sans exigences particulières	sans exigences particulières

2

3

4

G

CONTENT

Avertissement : Les composants doivent être tout le temps protégés contre les conditions climatiques.

L'humidité relative de l'air ambiant dans lequel les panneaux NOVATOP sont installés est de 55% pour une température de 20°C. Des fissures de bois peuvent se produire en raison de la faible humidité de l'air.

Avertissement : Les propriétés du bois des produits NOVATOP sont maintenues, le bois réagit donc aux changements de température et d'humidité par le retrait ou éventuellement par le gonflement. Le stockage et l'utilisation inappropriés dans des conditions extrêmes (températures et humidités extrêmes) peuvent entraîner des fissures et des déformations. L'endommagement du produit causé par un mauvais stockage, un traitement inapproprié, une mauvaise manipulation ou par le non-respect des procédures de mise en oeuvre – endra caduque la garantie du fabricant.

1

2

3

7

www.novatop-system.fr

Producteur: AGROP NOVA a.s. Ptenský Dvorek 99 • 798 43 Ptení République tchèque • Tel.: +420 582 397 856 novatop@agrop.cz • novatop-system.fr

Représentants commerciaux pour la France : www.novawood-systemes.fr

